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Overview

• Fundamentals of Machine Learning (ML)

• Focus: Decision Tree

•Choosing an ML algorithm

•Common ML Pitfalls
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Terminology and Definitions

• Instance: an individual or example in data.  
• E.g. A subject/patient in a drug trial. 

• Feature: one of the attributes describing an aspect of the 
instance. E.g. height, weight, age. 

• Outcome: In supervised learning, this is endpoint value, 
a.k.a. the dependent variable, or the target being predicted. 
• Label/Class: Terms used for outcome in classification.
• In regression, the outcome would be real-valued numbers.

• Model: A representation or simulation of reality. Typically a 
simplification based on a number of assumptions. 
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What is Machine Learning (ML)?

• A subset of artificial intelligence in the field of computer science that 
often uses statistical techniques to give computers the ability to 
"learn" (i.e., progressively improve performance on a specific task) 
with data, without being explicitly programmed1.

• ML is a general term many algorithms/methods.

• Big Picture Goal: Learning useful generalizations. 

1 Samuel Arthur – 1959 – ML in Checkers
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An Important Clarification

• Machine Learning is…
• Finding patterns or associations that can be used to make 

predictions. 

• Mostly NOT
• Designed to demonstrate causality. 
• At best: associations are candidates for causality. 
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Example: Predictive Modeling of Outcome
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Example: Email Spam Detection

http://www.holehouse.org/mlclass/11_Machine_Learning_System_Design.html
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Example: Community Detection

https://news.vice.com/en_us/article/d3xamx/journalists-and-trump-voters-live-in-separate-online-bubbles-mit-analysis-shows
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Example: Association Mining

https://www.datacamp.com/community/tutorials/market-basket-analysis-r

• Given a set of transactions, find rules that will 
predict purchase associations among items. 
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Other Examples of Applied ML
Image Classification

Fraud Detection

Stock PredictionFace Detection

Risk Analysis
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Fields & Terms Related to Machine Learning

12/17/2018



Ryan J. Urbanowicz, PhD ryanurbanowicz.com               ryanurb@upenn.edu              @DocUrbs

Statistics vs. Machine Learning

• Largely overlapping fields:

• Both concerned with learning from data

• Philosophical difference on ‘focus’ and ‘approach’.

• Statistics: 

• Founded in mathematics

• Drawing valid conclusions based on analyzing existing data.

• Making inference about a ‘population’ based on a ‘sample’

• Tends to focus on fewer variables at once.

• Precision and uncertainty are measures of model goodness.

• Machine Learning:

• Founded in computer science

• Focused on making predictions or seeking patterns (generalization).

• Often considers a large number of variables at once.

• Prediction accuracy to measure model goodness.
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Types of Machine Learning

Multi-Step Problems

Labeled Data

Unlabeled Data

Adapted from : https://www.pinterest.com/pin/786792997374742269/

Association

Mining

Feature Selection &

Attribute ImportanceAnomaly

Detection
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Machine Learning Algorithm Families

Support Vector

Machines

Evolutionary
Algorithms

Learning Classifier
Systems

IF  THEN

IF  THEN

IF  THEN

IF  THEN

Non-exhaustive
list of ML families
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Supervised Learning: Prediction

• Binary classification
• Discriminate between two discrete 

classes/labels

• Multiclass classification
• Allows for more than 2 discrete classes.
• E.g. Cancer classes may be healthy, early 

state, late stage.

• Regression
• Estimate a real-valued output variable
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Modeling with Machine Learning
Input
Data

Nearest
Neighbors

Linear
SVM

Decision
Tree

Random
Forest

Neural
Network

AdaBoost
Naïve
Bayes
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Models/ML: Representation
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Models and the NFL

“All models are wrong, but some models are useful” – George Box

• Assumptions that work well in one domain may fail in another.

• No Free Lunch Theorem (NFL):

• No single algorithm/model can perform optimally across all problems.

• Try:

• More than one modeling approach

• Different run parameters 

• “The knobs a data scientist gets to turn when setting up an algorithm to run”

• Ensemble methods. 
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Non-Linear Class Boundaries

Linear classification 
algorithm (e.g. SVM)

Linear regression 
algorithm
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Data: Types

[0, 1, 1, 1, 2, 1, 0, 0]
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Feature Extraction/Engineering

Example:
Email Spam Detection

From unstructured text…

…To meaningful features
for ML to interrogate. 
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Decision Tree: What is it?

• A decision support tool: way to present information for decision 
making and evaluate their consequences (e.g. cost)

• A supervised, machine learning algorithm to model and predict 
outcomes

12/17/2018



Ryan J. Urbanowicz, PhD ryanurbanowicz.com               ryanurb@upenn.edu              @DocUrbs

Decision Tree: Terminology
• Nodes:

• Root: It represents entire population or sample. 
Will get divided into two or more homogeneous 
sets.

• Decision: When a sub-node splits into further 
sub-nodes, then it is called decision node. 

• (AKA: Sub, internal, split, or chance node)

• Leaf: Nodes that don’t split. Gives class or 
average value. 

• (AKA: Terminal, or outcome node)

• Parent and Child: Parent node splits into 
offspring nodes.

• Splitting: It is a process of dividing a node into 
two or more sub-nodes.

• Branch / Sub-Tree: A sub section of entire tree is 
called branch or sub-tree.

• Levels/Depth: The number of splits through a 
given path down the three.
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Decision Rules: Tree Interpretation

• Decision tree can be ‘linearized’ into    
decision rules.
• One rule per path from root to leaf.
• Rule outcome = Leaf node 

• Rule: 
• If [condition1] and [condition2] Then: outcome

• Examples:
• If [not raining] Then: Don’t bring anything

• If [is raining] and [not windy] 
Then: use an umbrella
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Decision Tree for Heparin

• Heparin (anticoagulant) injection for the prevention of 
deep vein thrombosis (DVT) (i.e. clots)

• However, there are risks of bleeding

The research question:
‘Which is the more cost-effective 
treatment for hip replacement patients, 
heparin or conventional treatment?’
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Decision Tree for Heparin

• Entering probabilities

node chance leavingNumber 

branch that followingNumber 
P
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Evaluating Outcome Costs
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• Costs assumed
• Cost of heparin - $300
• Cost of conventional treatment - $50
• Cost of deep vein thrombosis event - $2000
• Cost of bleed - $500
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Decision Tree: Choosing a Split

• E.g. Predicting Credit Risk

• What feature to split on?

• Want correct classification in fewest 
number of tests/branches.

< 2 years at 
current job

Missed 
payments? Credit

S1 N N Good
S2 Y N Bad
S3 N N Good

S4 N N Good
S5 N Y Bad

S6 Y N Good

S7 N Y Good
S8 N Y Bad
S9 Y N Good

S10 Y N Good

Bad = 3
Good = 7

Bad = 1
Good = 6

Bad = 2
Good = 1
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Decision Tree: Choosing a Split

< 2 years at 
current job

Missed 
payments? Credit

S1 N N Good
S2 Y N Bad
S3 N N Good

S4 N N Good
S5 N Y Bad

S6 Y N Good

S7 N Y Good
S8 N Y Bad
S9 Y N Good

S10 Y N Good
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Bad = 1
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Decision Tree: Fitting with Splits
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Decision Tree: Fitting with Splits

12/17/2018

Y >0.5

X >0.8 X <0.3

Yes No

NoYes Yes No



Ryan J. Urbanowicz, PhD ryanurbanowicz.com               ryanurb@upenn.edu              @DocUrbs

Decision Tree: Fitting with Splits
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Decision Tree: Fitting with Splits
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Decision Tree: Fitting with Splits
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Decision Tree Challenges

• How do we decide best feature or value to split on?

• When should we stop splitting?

• What do we do if we can’t achieve perfect 
classification?

• What if the tree is too large? Can we approximate a 
smaller one?
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Where to start in selecting a method?

• If there is a strong, simple relationship among 
variables, most methods will find it.

• Generally start with simpler methods if you know 
nothing about the problem.

• When possible, limit the search space with 
knowledge/assumptions about the problem.
• E.g. If we want to know if there are linear patterns, use 

linear regression.

• Incorrect assumptions will limit or invalidate what 
can be found.
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Considerations When Choosing an ML Algorithm

• Data – Labeled?, Endpoint?
• Training Time / Run Speed
• Number and Importance of Parameters 

• Data Size – Features, Instances
• Interpretability 
• Assumptions 
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ML Performance Evaluation

Confusion Matrix

https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234
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Data Mining Pipeline
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Common Machine Learning Pitfalls
• Working with bad data

• Data leakage

• Not understanding the target problem

• Ignoring exploratory analysis

• Handling missing data

• Ignoring assumptions

• Representable does not imply learnable

• Sampling bias

• Overfitting

• Simplicity does not imply better 
generalizability

• Using the default parameters

• Failing to use an appropriate evaluation 
metric

• Data dredging

• Mistaking correlation for causation

• Failing to consider confounding variables
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Where do we go from here?

• Data preparation

• How do different ML 
methods work? 

• Feature selection

• Selecting run parameters

• Software/code to run ML

• Evaluation and statistical 
analysis

• Ensemble learning

• Model interpretation
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UPenn ML   

• Penn Machine Learning – Slack Workspace

• pennmachinelearning.slack.com
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