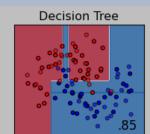
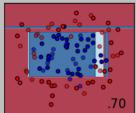
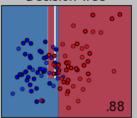
An Introduction to Machine Learning

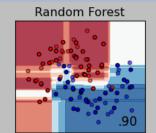


Decision Tree

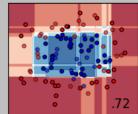


Decision Tree

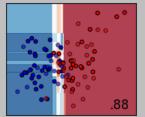


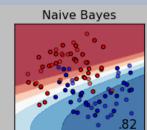


Random Forest

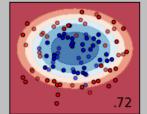


Random Forest

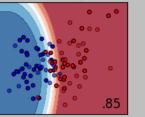




Naive Bayes



Naive Bayes



LDA

LDA

Ryan Urbanowicz, PhD

PA CURE Machine Learning Workshop: December 17

Overview

• Fundamentals of Machine Learning (ML)

• Focus: Decision Tree

• Choosing an ML algorithm

Common ML Pitfalls

Terminology and Definitions

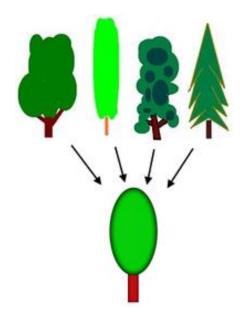
- Instance: an individual or example in data.
 - E.g. A subject/patient in a drug trial.
- Feature: one of the attributes describing an aspect of the instance. E.g. height, weight, age.
- Outcome: In supervised learning, this is endpoint value, a.k.a. the dependent variable, or the target being predicted.
 - Label/Class: Terms used for outcome in classification.
 - In regression, the outcome would be real-valued numbers.

Model: A representation or simulation of reality. Typically a simplification based on a number of assumptions.

What is Machine Learning (ML)?

 A subset of artificial intelligence in the field of computer science that often uses statistical techniques to give computers the ability to <u>"learn"</u> (i.e., progressively improve performance on a specific task) with data, <u>without being explicitly programmed</u>¹.

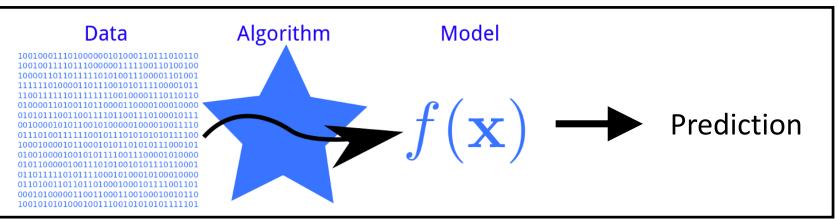
- ML is a general term \rightarrow many algorithms/methods.
- <u>Big Picture Goal</u>: Learning useful generalizations.



¹ Samuel Arthur – 1959 – ML in Checkers

An Important Clarification

- Machine Learning is...
 - Finding patterns or associations that can be used to make predictions.



Example: Predictive Modeling of Outcome

- Mostly NOT
 - Designed to demonstrate causality.
 - At best: associations are candidates for causality.

ryanurb@upenn.edu

2 @DocUrbs 12/17/2018

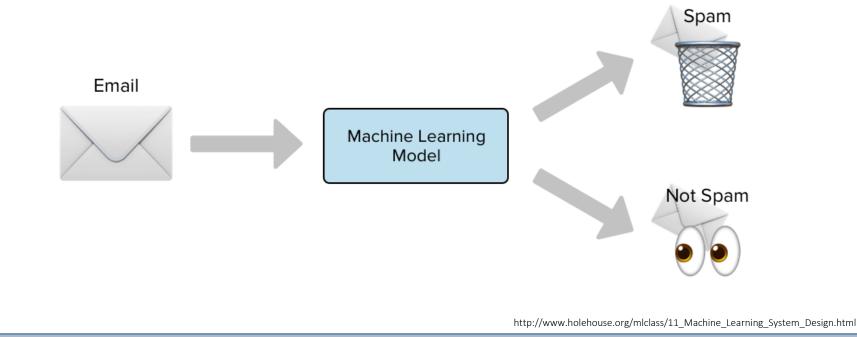
http://phdp.github.io/posts/2013-07-05-dtl.html

Example: Email Spam Detection

From: cheapsales@buystufffromme.com To: ang@cs.stanford.edu Subject: Buy now!

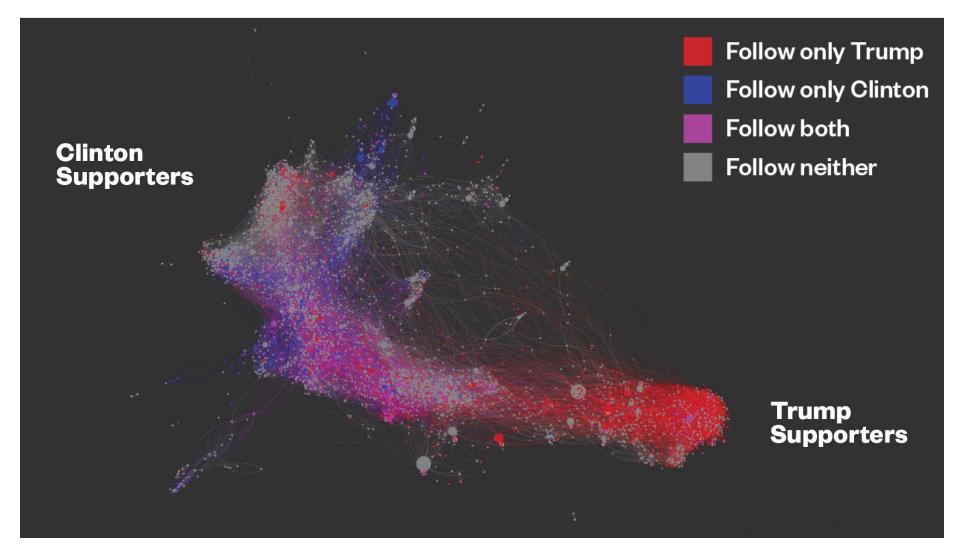
Deal of the week! Buy now! Rolex w4tchs - \$100 Medicine (any kind) - \$50 Also low cost Morgages available. From: Alfred Ng To: ang@cs.stanford.edu Subject: Christmas dates?

Hey Andrew, Was talking to Mom about plans for Xmas. When do you get off work. Meet Dec 22? Alf



u 🔰 @DocUrbs

Example: Community Detection



https://news.vice.com/en_us/article/d3xamx/journalists-and-trump-voters-live-in-separate-online-bubbles-mit-analysis-shows

2 @DocUrbs

12/17/2018

Example: Association Mining

• Given a set of transactions, find rules that will predict purchase associations among items.

ID	Items	7
1	{Bread, Milk}	
2	{Bread, Diapers, Beer, Eggs}	market
3	{Milk, Diapers, Beer, Cola}	transactions
4	{Bread, Milk, Diapers, Beer}	
5	{Bread, Milk, Diapers, Cola}	

{Diapers, Beer} {Diapers} → {Beer}

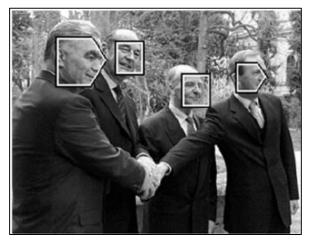
.edu 🔰 @DocUrbs

https://www.datacamp.com/community/tutorials/market-basket-analysis-r

Other Examples of Applied ML

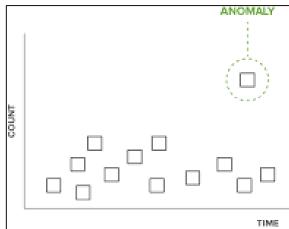
Image Classification

Face Detection



Stock Prediction

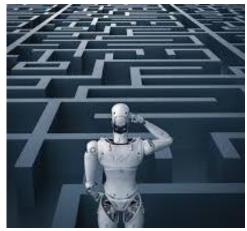
Fraud Detection



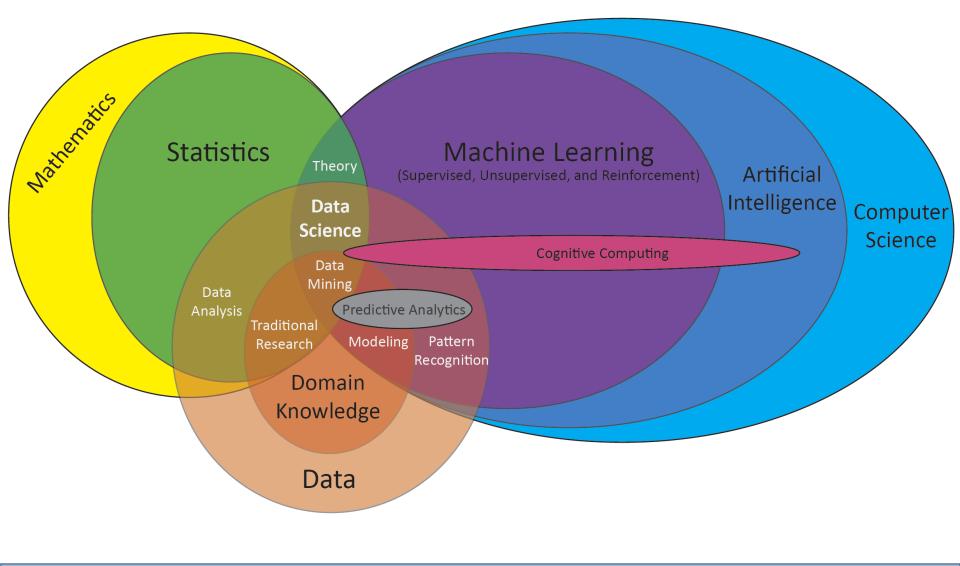
Risk Analysis

		Probability				
EXAMPLE RISK		Very High	High	Medium	Low	Very Low
	Very High	Very High	Very High	Very High	High	High
	High	Very High	High	High	Medium	Medium
Conse- quence	Medium	High	High	Medium	Medium	Low
	Low	High	Medium	Medium	Low	Very Low
	Very Low	Medium	Low	Low	Very Low	Very Low

Navigation



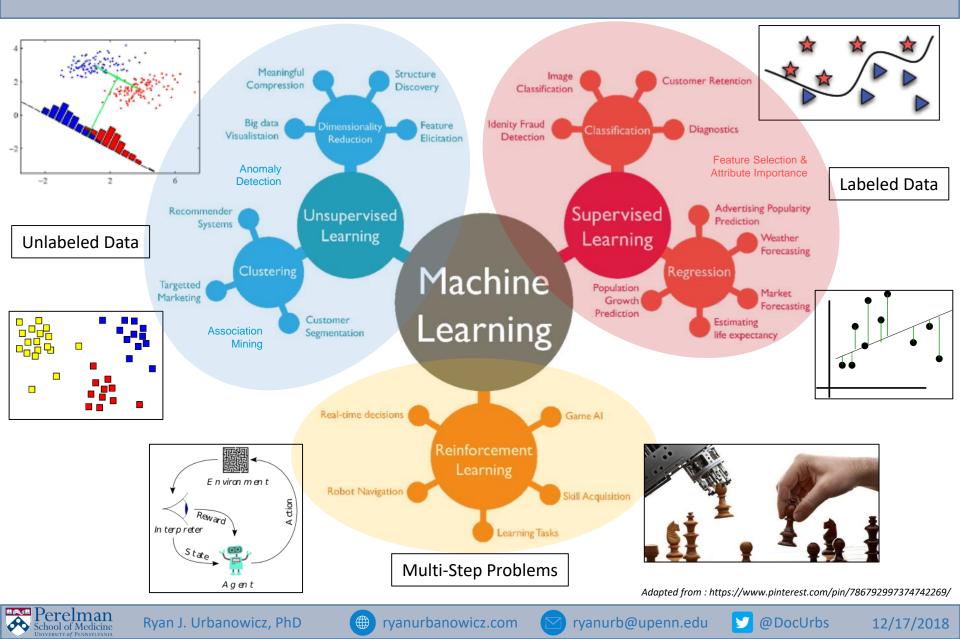
Fields & Terms Related to Machine Learning



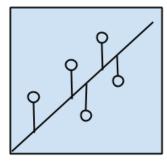
Statistics vs. Machine Learning

- Largely overlapping fields:
 - Both concerned with learning from data
 - Philosophical difference on 'focus' and 'approach'.
- <u>Statistics</u>:
 - Founded in mathematics
 - Drawing valid conclusions based on analyzing existing data.
 - Making <u>inference</u> about a 'population' based on a 'sample'
 - Tends to focus on fewer variables at once.
 - Precision and uncertainty are measures of model goodness.
- Machine Learning:
 - Founded in computer science
 - Focused on making predictions or seeking patterns (generalization).
 - Often considers a large number of variables at once.
 - Prediction accuracy to measure model goodness.

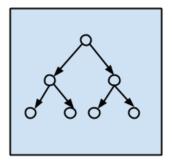
Types of Machine Learning



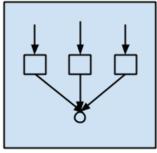
Machine Learning Algorithm Families



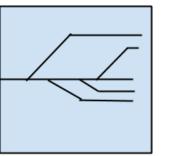
Regression Algorithms



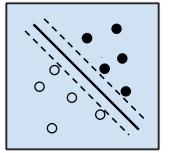
Decision Tree Algorithms



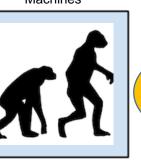
Ensemble Algorithms

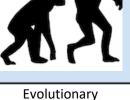


Regularization Algorithms

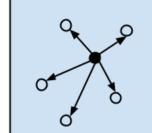


Support Vector Machines

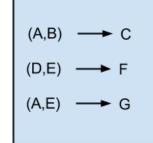




Algorithms

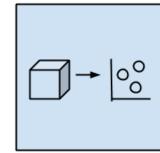


Instance-based Algorithms

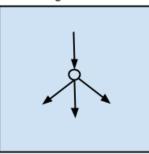


Association Rule Learning Algorithms

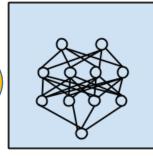
Non-exhaustive list of ML families



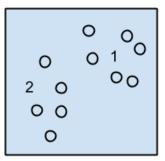
Dimensional Reduction Algorithms



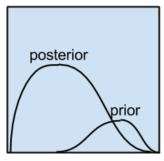
Artificial Neural Network Algorithms



Deep Learning Algorithms



Clustering Algorithms



Bayesian Algorithms

IF → THEN IF → THEN IF → THEN	
IF \rightarrow THEN	
Learning Classifier	
Systems	

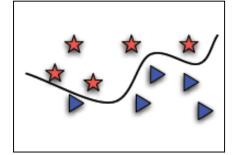
rvanurb@upenn.edu

@DocUrbs

12/17/2018

Supervised Learning: Prediction

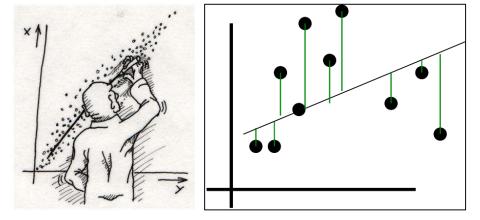
- Binary classification
 - Discriminate between two discrete classes/labels



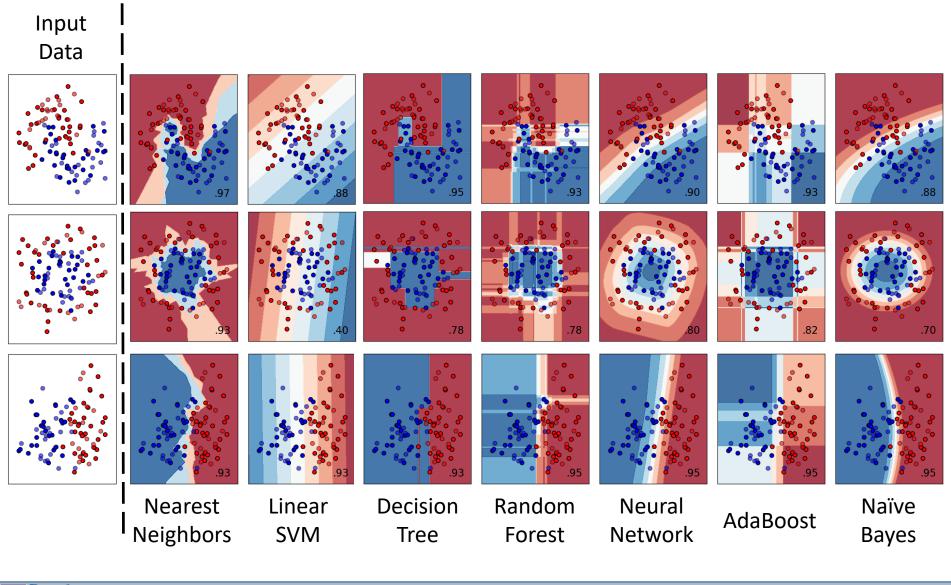
- Multiclass classification
 - Allows for more than 2 discrete classes.
 - E.g. Cancer classes may be healthy, early state, late stage.



- Regression
 - Estimate a real-valued output variable



Modeling with Machine Learning



School of Medicine

Ryan J. Urbanowicz, PhD

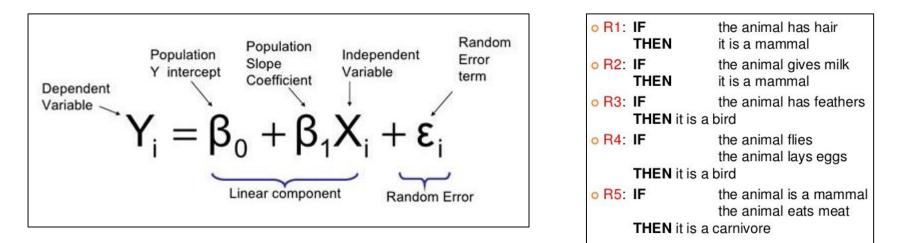
ryanurbanowicz.com

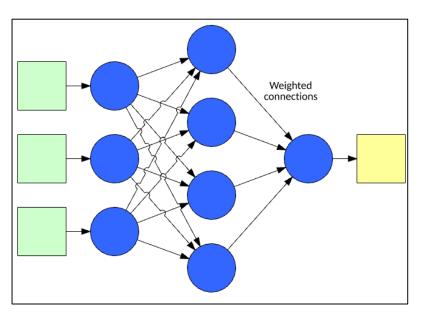
ryanurb@upenn.edu

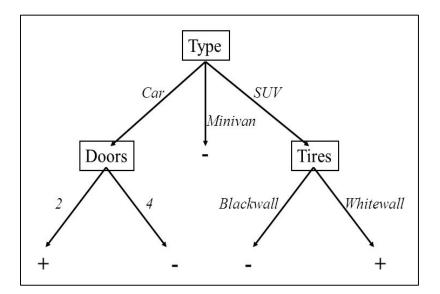
edu 🔰 @DocUrbs

:Urbs 12/17/2018

Models/ML: Representation



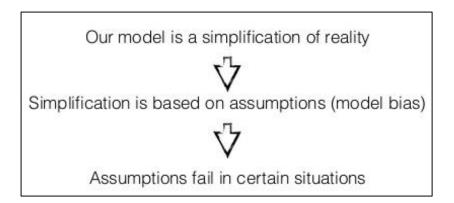




12/17/2018

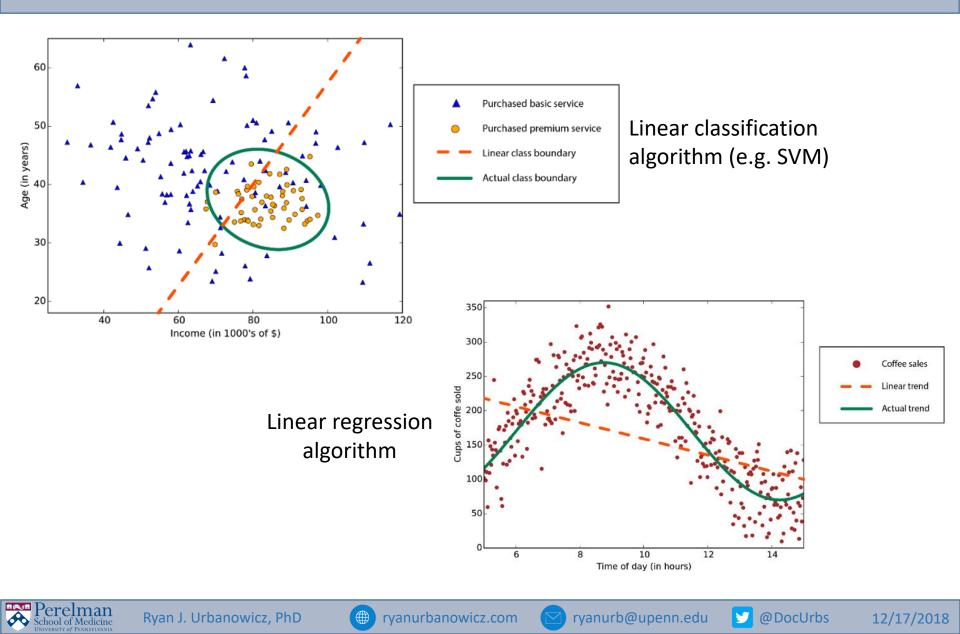
Models and the NFL

"All models are wrong, but some models are useful" – George Box



- Assumptions that work well in one domain may fail in another.
- No Free Lunch Theorem (NFL):
 - No single algorithm/model can perform optimally across all problems.
- Try:
 - More than one modeling approach
 - Different run parameters
 - "The knobs a data scientist gets to turn when setting up an algorithm to run"
 - Ensemble methods.

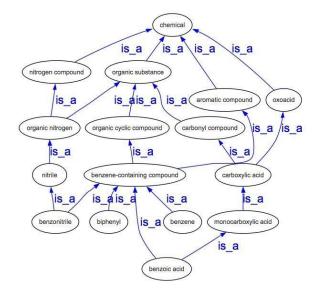
Non-Linear Class Boundaries

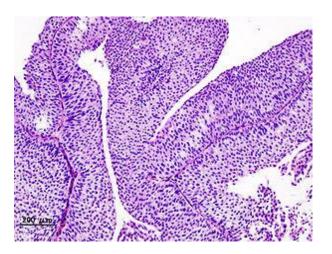


Data: Types

[0, 1, 1, 1, 2, 1, 0, 0]

[1]	0	0	0]	
0	1	0	0	
0	0	1	0	
0	0	0	1	





data health system hospitalehr incentivereport health record ehrmeaningful use stage meaningful years health care system information technology technology healthcare medicare and medicaid health information clinical physicians system ehrhealth information exchange medical electronic new providers health information technology medical center emr electronic medical records records company ehr incentive program electronic health records accountable care organizations health clinical decision support health clinical decision support time services improve

🥑 @DocUrbs

12/17/2018

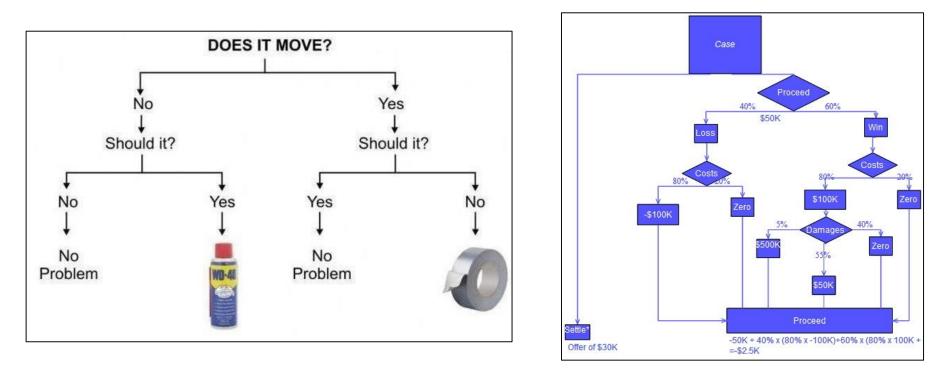
Feature Extraction/Engineering

Example: Email Spam Detection	From: cheapsales@buystufffromme.com To: ang@cs.stanford.edu Subject: Buy now!	From: Alfred Ng To: ang@cs.stanford.edu Subject: Christmas dates?
From unstructured text	Deal of the week! Buy now! Rolex w4tchs - \$100 Med1cine (any kind) - \$50	Hey Andrew, Was talking to Mom about plans for Xmas. When do you get off
To meaningful features for ML to interrogate.	Also low cost M0rgages available.	work. Meet Dec 22? Alf

('	'money''	"pills"	"Mr."	bad spelling	known-sender	spam?	
	Y	N	Y	Y	Ν	Y	_
	N	N	Ν	Y	Y	N	
	Ν	Y	Ν	Ν	N	Y	
examp	le Y	N	Ν	Ν	Y	Ν	label
	N	N	Y	Ν	Y	N	
	Y	N	Ν	Y	Ν	Y	
	N	N	Y	Ν	Ν	N	
						1	

Decision Tree: What is it?

• A decision support tool: way to present information for decision making and evaluate their consequences (e.g. cost)

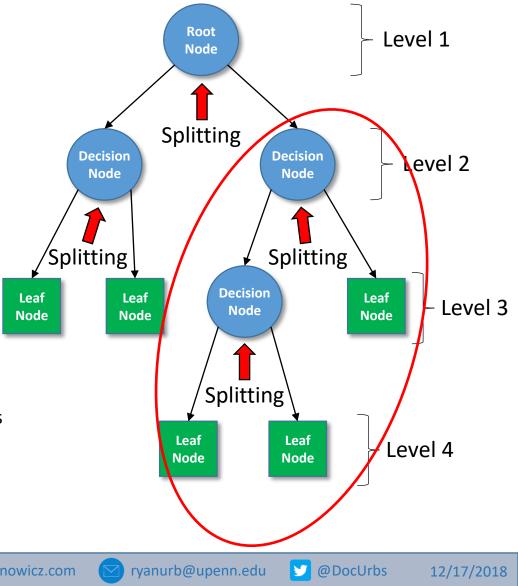


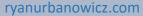
A supervised, machine learning algorithm to model and predict outcomes

Decision Tree: Terminology

Nodes:

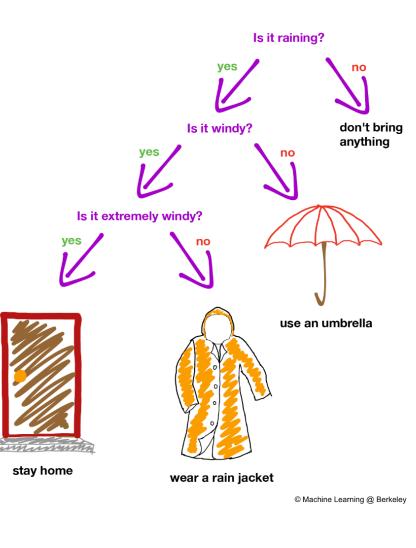
- **Root:** It represents entire population or sample. Will get divided into two or more homogeneous sets.
- **Decision:** When a sub-node splits into further sub-nodes, then it is called decision node.
 - ٠ (AKA: Sub, internal, split, or chance node)
- Leaf: Nodes that don't split. Gives class or average value.
 - (AKA: Terminal, or outcome node) ٠
- Parent and Child: Parent node splits into offspring nodes.
- **Splitting:** It is a process of dividing a node into two or more sub-nodes.
- **Branch / Sub-Tree:** A sub section of entire tree is called branch or sub-tree.
- Levels/Depth: The number of splits through a given path down the three.



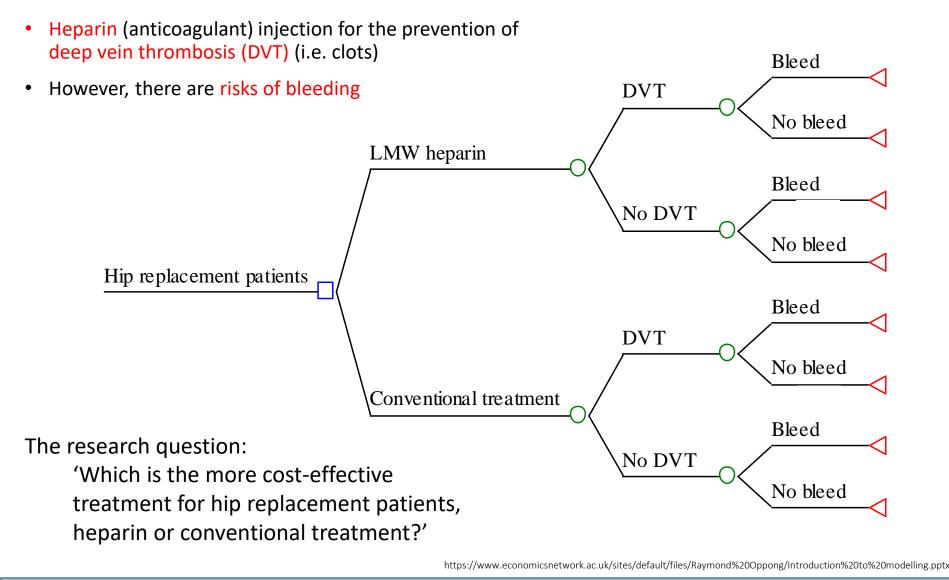


Decision Rules: Tree Interpretation

- Decision tree can be 'linearized' into decision rules.
 - One rule per path from root to leaf.
 - Rule outcome = Leaf node
- Rule:
 - <u>If</u> [condition1] and [condition2] <u>Then</u>: outcome
- Examples:
 - If [not raining] Then: Don't bring anything
 - <u>If</u> [is raining] and [not windy] <u>Then:</u> use an umbrella

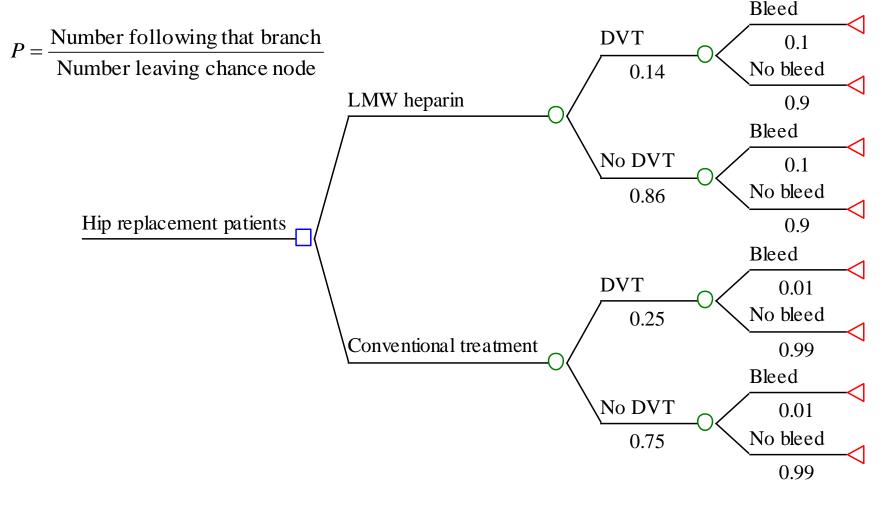


Decision Tree for Heparin



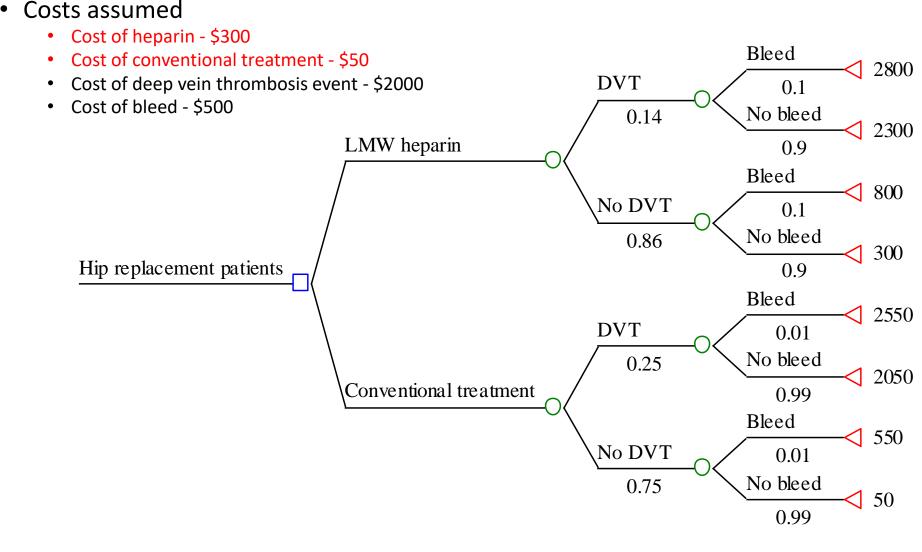
Decision Tree for Heparin

• Entering probabilities



https://www.economicsnetwork.ac.uk/sites/default/files/Raymond%200ppong/Introduction%20to%20modelling.pptx

Evaluating Outcome Costs



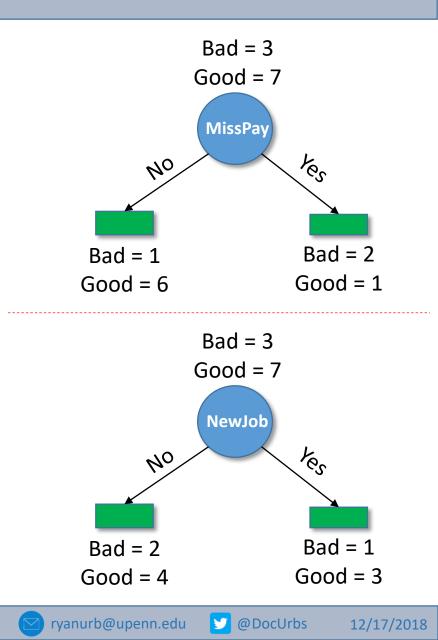
https://www.economicsnetwork.ac.uk/sites/default/files/Raymond%20Oppong/Introduction%20to%20modelling.pptx

(Image: style="text-align: center;">Image: style="text-align: center;"/>Image: style="text-align: center;"//Image: style="text-align: center;"/>Image: style="text-align: center;"/>Image: style="text-align: center;"/>Image: style="text-align: center;"/>Image: style="text-align: center;"//Image: style="text-align: center;"/>Image: style="text-align: ce

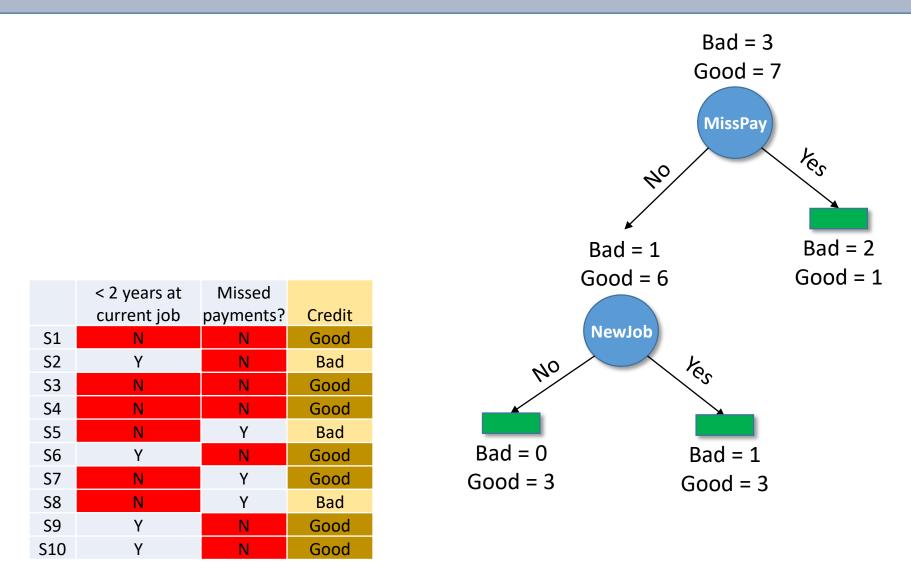
Decision Tree: Choosing a Split

- E.g. Predicting Credit Risk
- What feature to split on?
- Want correct classification in fewest number of tests/branches.

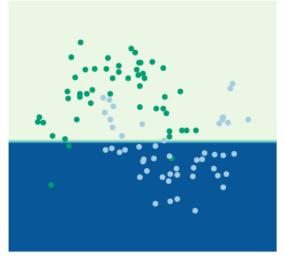
	< 2 years at current job	Missed payments?	Credit
S1	N	N	Good
S2	Y	N	Bad
S3	N	N	Good
S4	Ν	N	Good
S5	N	Y	Bad
S6	Y	N	Good
S7	N	Y	Good
S8	N	Y	Bad
S9	Y	N	Good
S10	Y	N	Good

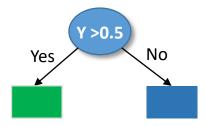


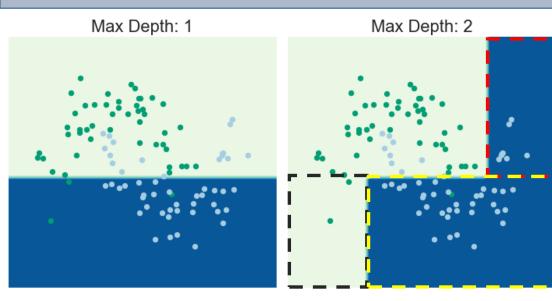
Decision Tree: Choosing a Split

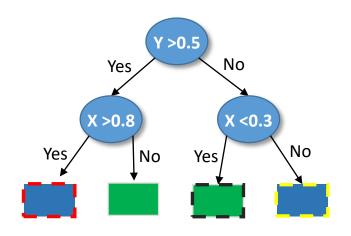


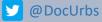
Max Depth: 1

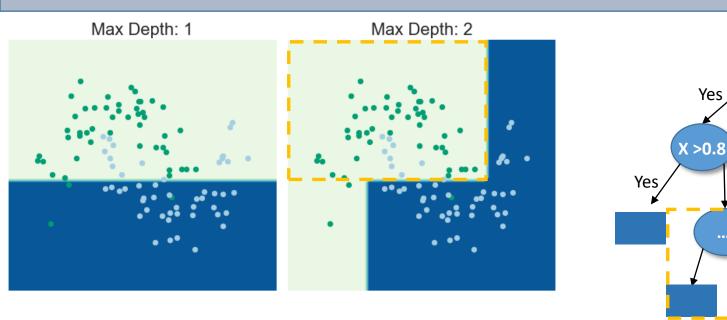












Y >0.5

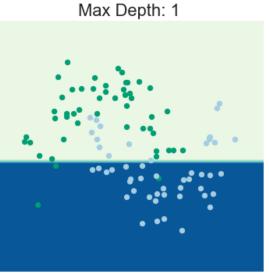
No

No

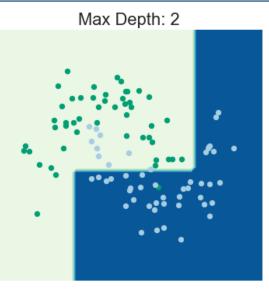
Yes

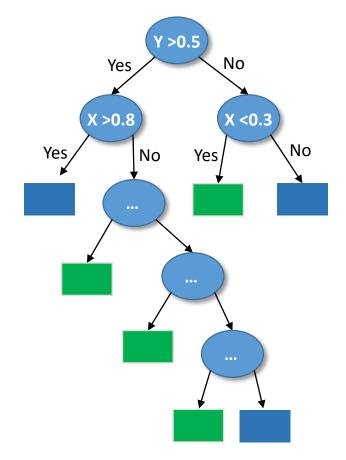
X <0.3

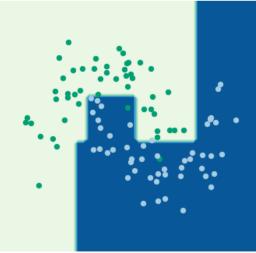
No



Max Depth: 5



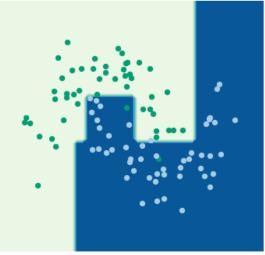


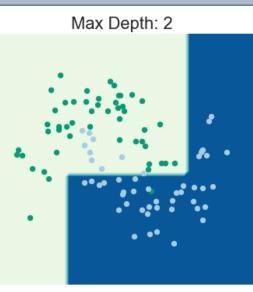


•

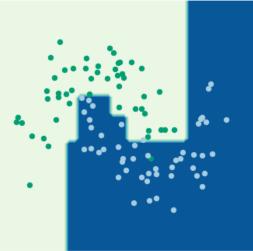


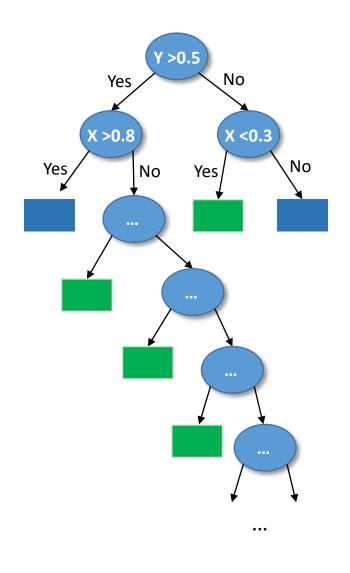
Max Depth: 5





Max Depth: 10





Decision Tree Challenges

- How do we decide best feature or value to split on?
- When should we stop splitting?
- What do we do if we can't achieve perfect classification?
- What if the tree is too large? Can we approximate a smaller one?

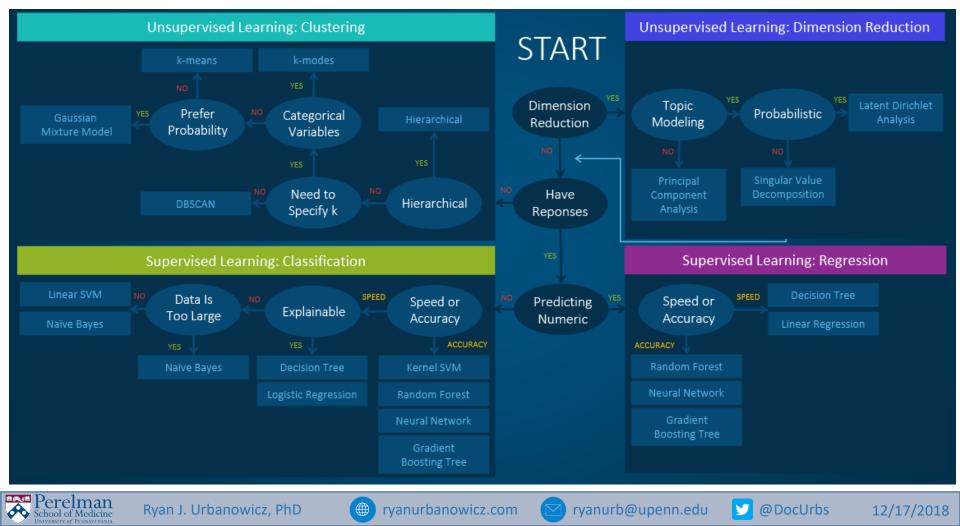
Where to start in selecting a method?

- If there is a strong, simple relationship among variables, most methods will find it.
- Generally start with simpler methods if you know nothing about the problem.
- When possible, limit the search space with knowledge/assumptions about the problem.
 - E.g. If we want to know if there are linear patterns, use linear regression.
- Incorrect assumptions will limit or invalidate what can be found.

Considerations When Choosing an ML Algorithm

- Data Labeled?, Endpoint?
- Training Time / Run Speed
- Number and Importance of Parameters

- Data Size Features, Instances
- Interpretability
- Assumptions



ML Performance Evaluation

recall

$$Accuracy = \frac{Number \ of \ Correct \ predictions}{Total \ number \ of \ predictions \ made}$$

 $TruePositiveRate = \frac{TruePositive}{FalseNegative + TruePositive}$

 $FalsePositiveRate = \frac{FalsePositive}{FalsePositive + TrueNegative}$

$$Precision = \frac{TruePositives}{TruePositives + FalsePositives}$$

$$Recall = \frac{TruePositives}{TruePositives + FalseNegatives}$$

$$F1 = 2 * \frac{1}{\frac{1}{precisio}}$$

$$MeanAbsoluteError = \frac{1}{N} \sum_{j=1}^{N} |y_j - \hat{y}_j|$$

$$MeanSquaredError = \frac{1}{N} \sum_{j=1}^{N} (y_j - \hat{y}_j)^2$$

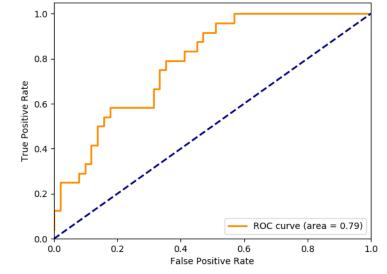
https://towards datascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234

$$LogarithmicLoss = \frac{-1}{N} \sum_{i=1}^{N} \sum_{j=1}^{M} y_{ij} * \log(p_{ij})$$

Confusion Matrix

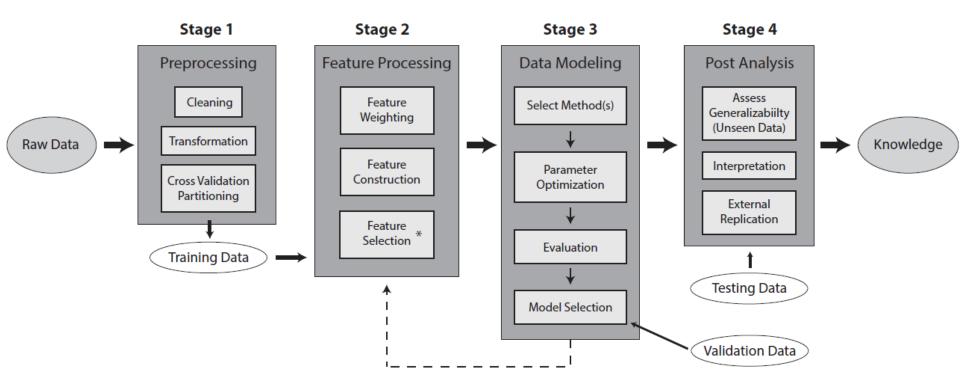
	Predicted:	Predicted:
n=165	NO	YES
Actual:		
NO	50	10
Actual:		
YES	5	100

Receiver operating characteristic example



У @DocUrbs

Data Mining Pipeline



12/17/2018

Working with bad data

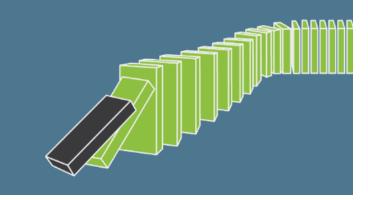
- •

Biased

Sparse

Dirty

BAD DATA = BAD EVERYTHING



Duplicate

edu

- **Data leakage**

101 1101

110101 110001

1001

Usable

Data Leakage

Moment of Prediction

Not Usable

Time

- Not defining the target problem/goals

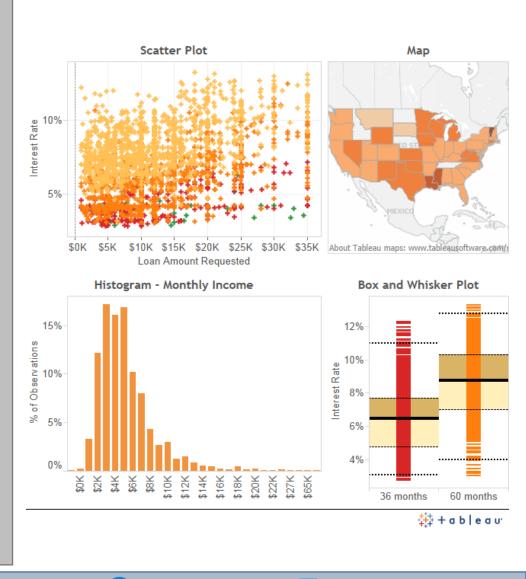
ryanurb@upenn.edu



"A problem well stated is a problem half solved."

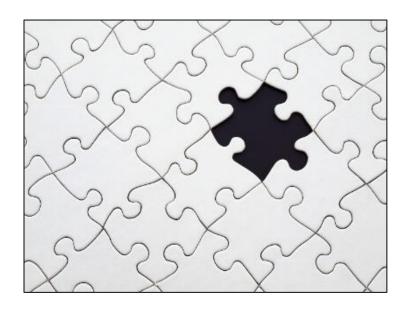
Charles Kettering (1876-1958)

- Working with bad data
- Data leakage
- Not defining the target problem/goals
- Ignoring exploratory analysis
- Handling missing data
- Ignoring assumptions
- Representable does not imply learnable
- Sampling bias
- Overfitting
- Simplicity does not imply better generalizability
- Using the default parameters
- Failing to use an appropriate evaluation metric
- Data dredging
- Mistaking correlation for causation
- Failing to consider confounding variables



- Working with bad data
- Data leakage
- Not defining the target problem/goals
- Ignoring exploratory analysis
- Handling missing data
- Ignoring assumptions
- Representable does not imply learnable
- Sampling bias
- Overfitting
- Simplicity does not imply better generalizability
- Using the default parameters
- Failing to use an appropriate evaluation metric
- Data dredging
- Mistaking correlation for causation
- Failing to consider confounding variables

• Different types of 'missingness'

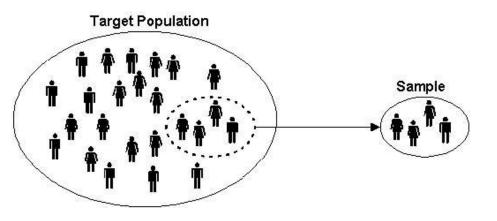


- Handling:
 - Removal
 - Imputation
 - Encoding as Features

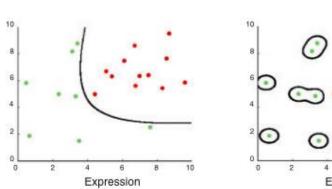
- **Ignoring assumptions**

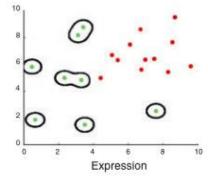
- **Representable does not imply learnable**

Sampling bias

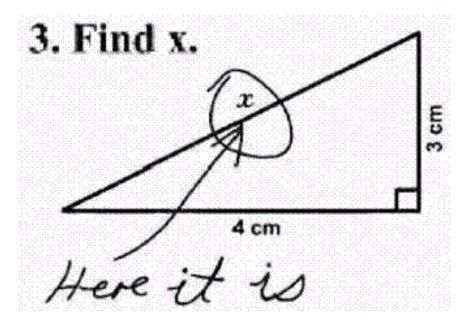


- **Overfitting**





- Simplicity does not imply better generalizability



- Using the default parameters

- Failing to use an appropriate evaluation metric

ryanurb@upenn.edu

- •

- Data dredging

If you torture the data long enough, it will confess.

Data Fishing

Data Snooping

P-hacking

ICE CREAM SALES

SHARK ATTACKS

MAR

- Mistaking correlation for causation

JAN

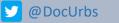
MAY

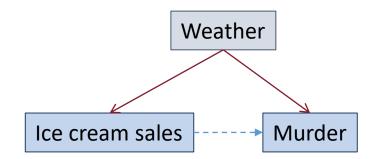
JUL

SEP

NOV

- Failing to consider confounding variables



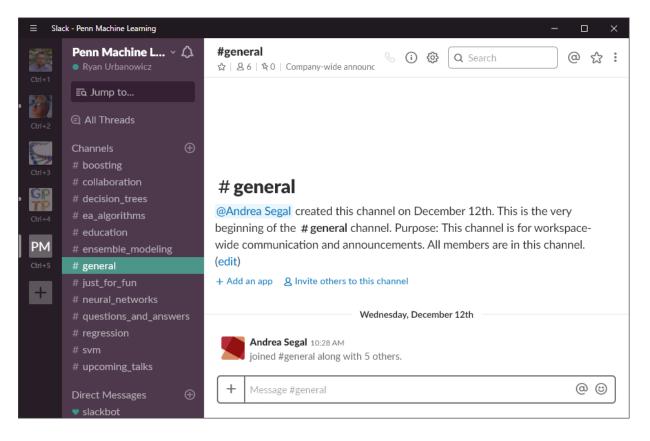


Where do we go from here?

- Data preparation
- How do different ML methods work?
- Feature selection
- Selecting run parameters
- Software/code to run ML
- Evaluation and statistical analysis
- Ensemble learning
- Model interpretation

UPenn ML 🤑 slack

- Penn Machine Learning Slack Workspace
- pennmachinelearning.slack.com



Acknowledgements and Funding

 Pennsylvania Commonwealth Universal Research Enhancement Program (CURE)

Penn LDI Leonard Davis Institute of Health Economics

DEPARTMENT of BIOSTATISTICS EPIDEMIOLOGY & INFORMATICS

Institute for Biomedical Informatics

12/17/2018