Electrolyte Repletion Patterns of Providers in ICU

Mentor: Dr. Krystoff Laudanski
Presenters: Mousa Ghannam and Parasteh Malihi
Presentation Overview

- Background
- Information On Design
- Project Goal
- Preliminary findings
- Methodology
- Conclusion
Background: Electrolyte Repletion

- Common routine intervention in the ICU
- Electrolytes: $K^+\,$, $Ca^{2+}\,$, $PO_4^{2-}\,$, and $Mg^{2+}\,$
 - Regulate nerve and muscle function, hydrate the body, balance blood acidity, etc.\(^1\)
 - Goal: maintain homeostatic range
- Variation in repletion protocol
 - Repletion regimens vary by institution and by individual patient factors\(^2\)
- Adherence to published guidelines is poor\(^3\)

Source:
Significance of Study

- All decision making is vulnerable to different forms of cognitive and emotional bias or error\(^5\)
- Heuristics play a role in clinical decision making
 - More than 40 forms of cognitive errors, many are interrelated\(^5\)
- To Err is Human: Building a Safer Health System\(^6\)
 - 44,000-98,000 deaths and over a million injuries a year caused by medical errors
 - Need to improve safety by understanding error and how provider bias influences clinical decision making
 - characterizing behaviors in varying clinical settings

Source:
Presentation Overview
Information of Design

- In 2018, Joseph et al. and researchers analyzed ICU data (2010-2015) from 3 major hospitals in the University of Pennsylvania Health System.

- Key findings
 - Electrolyte repletions resulted in modest changes in serum levels.
 - Pre-repletion lab value was the more important factor correlating with the amount of increase, rather than the dose administered.
 - 67% of replacement happened when the prior potassium level was within the reference limit.
 - Deligent repletions do not decrease the risk of adverse events secondary to electrolyte abnormalities.
 - $1,254,869.06 in total cost savings and 343 provider-days in total time savings.

Source:
Presentation Overview

1. Background
2. Information On Design
3. Project Goal
4. Methodology
5. Preliminary Findings
6. Conclusion
Goal of Project

1. Cross validate results from the UPHS study using the MIMICs database
 a. Is this pattern unique to UPHS or could this pattern be systemic
2. Testing assumptions behind clinical reasoning
Data

MIMIC-III

- MIMIC-III (Medical Information Mart for Intensive Care III)
 - Freely accessible critical care database
 - Contains over 40,000 patients staying in the critical care units of the Beth Israel Deaconess Medical Center in Boston, MA between 2001-2012
 - Critical Care information systems used:
 - CareVue (Philips CareVue Clinical Information System)
 - 2001-2008
 - MetaVision (iMDsoft MetaVision ICU system)
 - 2008+
Methodology

1. Exclusion of Confounding Variables
 a. < 18 Y/O
 b. Diseases affecting electrolytes
 i. pRBCs, rhabdomyolysis, parathyroid disease, sarcoid disease, end-stage renal disease (Add amounts excluded for each)
 c. GFR < 30
2. Selection Criteria
 a. All lab-values associated within 24 hours of a repletion
 b. Most recent lab-value prior and after repletion used
 c. Previous study on UPHS had more conservative definition
 i. Needed pre and post lab value
3. Ionized Ca\(^{2+}\) only used
 a. Reason for lower n
Time of Repletion and Lab Draws

Source:
Pre Electrolyte Thresholds

Potassium
- UPHS: 74%
- MIMIC: 74%

Magnesium
- UPHS: 88%
- MIMIC: 88%

Calcium
- UPHS: 85%
- MIMIC: 85%

Phosphate
- UPHS: 46%
- MIMIC: 46%
Pre & Post Repletions for Electrolytes

UPHS

- **Potassium level before and after repletion**
- **Ca Mean Threshold**: 1.07 ± 0.07
- **Mg Mean Threshold**: 1.78 ± 0.59
- **Phos Mean**: 2.30 ± 0.95

MIMIC

- **Potassium level before and after repletion**
- **Ca Mean Threshold**: 1.07 ± 0.07
- **Mg Mean Threshold**: 1.78 ± 0.59
- **Phos Mean**: 2.30 ± 0.95
Pre-Repletion Thresholds: Kidney disease

- Kidney failure disrupts potassium metabolism
 - Hypothesis: Since hyperkalemia commonly occurs, we assume that threshold for potassium repletion would be lower in the stages of CKD than the control
- S_1 excluded ($n=15$)
- Sample size constrained

Source:
Presentation Overview

Background → Information On Design → Project Goal

Conclusion ← Preliminary findings ← Methodology
Challenges

- Two different critical care information systems
 - Many different item-ids to sort through
 - Different formats for each database
 - Defining a “beginning” of a repletion was difficult between both
- MIMICs and UPHs data were different
 - MIMICs lacked provider IDs!
 - Provider IDs limited to people that validated a given repletion, not who ordered it
Concluding Remarks

Mousa
- Responsibilities
 - Led majority of data analysis, Data visualization, project methodology, statistical knowledge acquisition
- Lessons Learned
 - Strengthened coding skills, knowledge in the methodology and design process, statistical knowledge acquisition

Parasteh
- Responsibilities
 - Assisted in data analysis, background research, will assist in writing manuscript
- Lessons Learned
 - Coding, knowledge in the research design process, statistical knowledge acquisition
Thank you!

Dr. Kryztoff Laudansk
Joanne Levy
Ann Fischer
Aman Deep
Ken Moon
Evelyn Fabian